

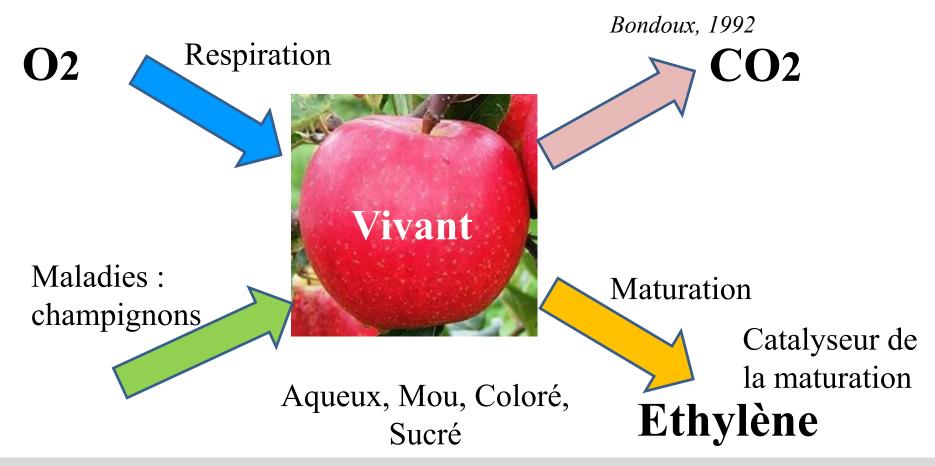
Centre wallon de Recherches agronomiques

Recherche et expérimentations pour limiter les pertes de fruits après récolte

par Audrey Pissard et Laurent JAMAR a.pissard@cra.wallonie.be & l.jamar@cra.wallonie.be

Paris, 25 janvier 2018 – Journées techniques ITAB

1. Essai de conservation en module 'Janny MT' & de traitements de protection


Laurent JAMAR

2. Recherche de méthodes innovantes permettant d'optimiser la date de récolte Audrey Pissard

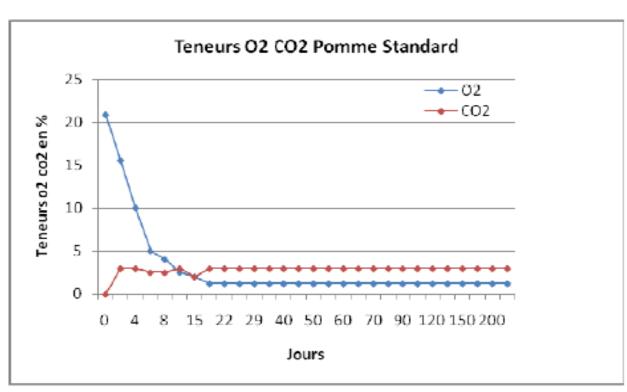
1. Essai de conservation en module 'Janny MT' & de traitements de protection

Laurent JAMAR

Conservation après récolte ? Pertes = 15 à 30 %

Conservation en chambre froide d'atmosphère contrôlée dynamique (ACD ou ULO)

Dans

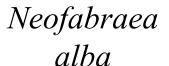

l'atmosphère:

21 % O2

0,04 % CO2

$$0 < T^{\circ} < 2^{\circ} C$$

$$HR = 90\%$$


L'appauvrissement en O2 ne doit pas descendre en dessous de 2 % L'enrichissement en CO2 ne doit pas dépasser 6 à 8 %

Colletotrichum gloeosporioides

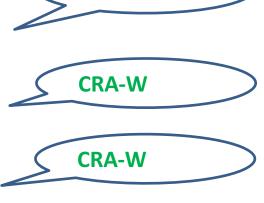
Les variétés commerciales = sensibles aux maladies de conservation dues à des champignons Ex: Gloeosporioses, monilioses,

anthracnoses, tav., ...

Traitements?

Technologie SmartFresh

- 1-methylcyclopropène (1-MCP), 1996 –US = régulateur croissance
- De par sa similarité avec l'éthylène, agit sur les récepteurs d'éthylène
- Se libère dans l'espace de stockage (gaz) et bloque les récepteurs
- Formulation poudreuse dissoute dans l'eau en début de stockage
- → blocage de la maturation



Objectifs

Quels moyens existent-t-ils pour limiter l'usage de produit de protection

- <u>Prophylaxie</u>: éliminer les fruits malades au verger, couper les chancres, détruire les momies au sol, ...
 - → efficacité \
- Traitement à l'eau chaude : par trempage 2 à 3 minutes à 48-52°C : → investissements importants
- <u>Conservation à basses teneurs en oxygène:</u> ULO
 - → très chère et gros volume
- Optimisation de la date de récolte:
 - → trop peu considéré
- Interventions en pré-récolte : → problème de résidus, pas de produits reconnus efficaces en AB

CRA-W

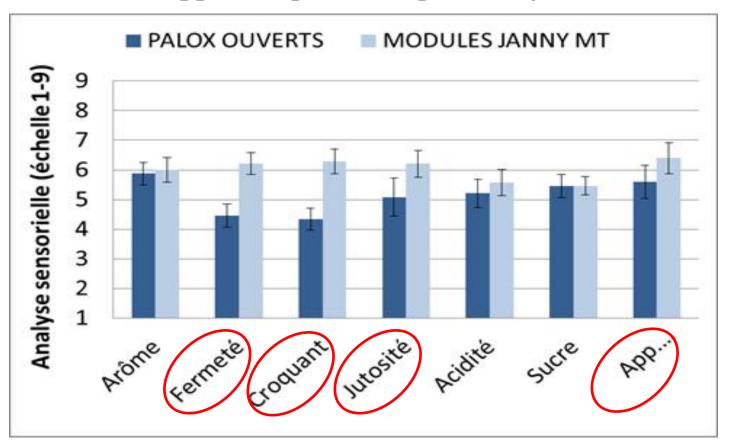
Objectif: comparer 2 méthodes de conservation des pommes sur la qualité après 5 mois de conservation en frigo

- Modalité 1 : Palox classique ouvert
- Modalité 2 : Palox « Mat Tiempo Janny MT »

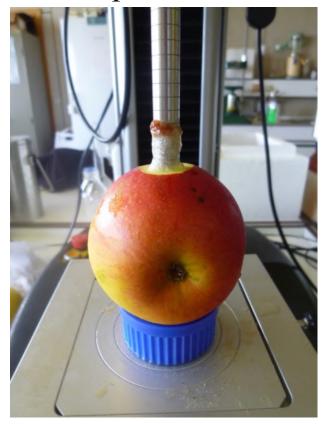
Méthodes: 3 ans, 8 var., 2 frigos, 4 rep/modalité, 16 critères qual.

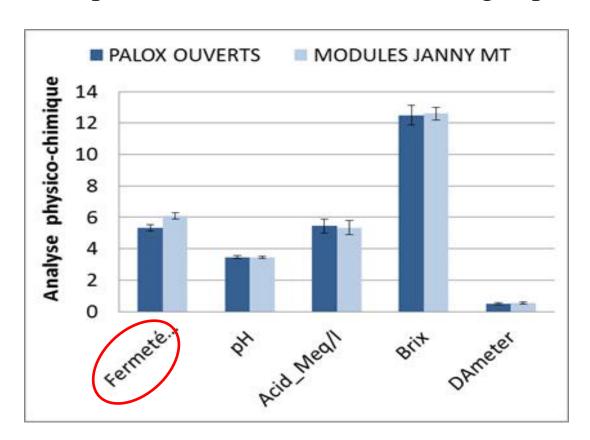
Avantages: modules JANNY MT

Allongement de la durée de vie par réduction du métabolisme

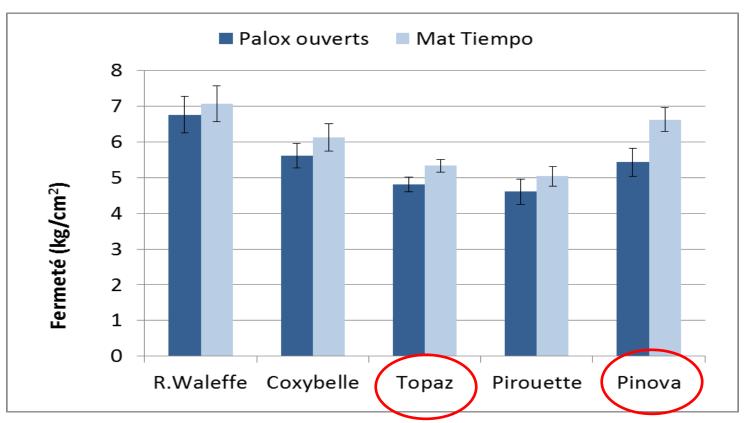

- Équilibre O2 CO2 naturel
- Mise en place aisée
- Souplesse de vente
- déstockage par petits volumes
- Peu ou pas de perte de poids
- Maintien de la fraîcheur du fruit
- Faible investissement

	Température C°	O2 %	CO2 %	Durée de conservation en jours
Froid classique	2 C°	21	0	120 jours
AC JANNY	2 C°	1 à 5	1 à 5	210 jours

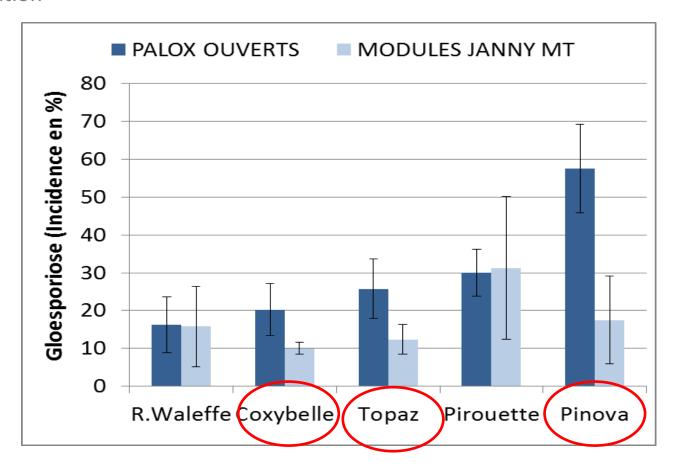

Bien que l'analyse sensorielle fournis des renseignements intéressants, cette approche peut manquer d'objectivité



Exemple : Le consommateur apprécie des fruits croquants, fermes et juteux. Le pénétromètre électronique Lloyd offre des résultats précis. Il enregistre en temps réel la résistance à la pénétration.



Le suivi de différents paramètres physico-chimiques permet d'évaluer l'impact des 2 modalités de stockage après 4 mois

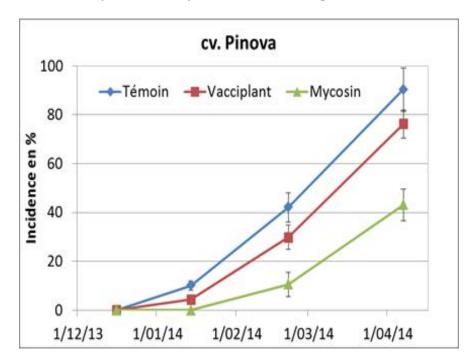


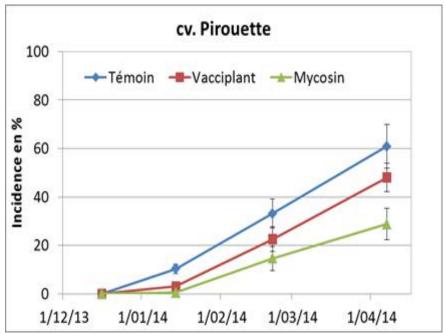
Essai 2013 - Impact des palox à atmosphère contrôlée sur la fermeté de différentes variétés de pomme après 4 mois de conservation

Impact des palox à atmosphère contrôlée sur la sévérité des maladies de conservation

Essai de protection en verger

Application de substances d'origine naturelle en vue de limiter le développement de maladies en verger

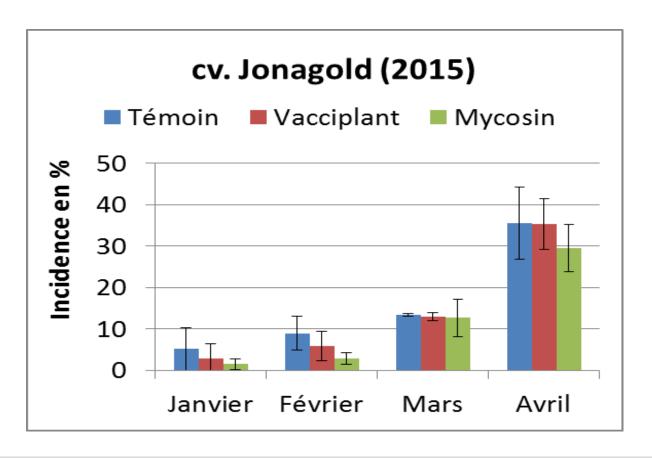

Matériel et méthodes


- 2014: 2 traitements 'Vacciplant' ou 6 traitements 'Mycosin' avec atomiseur std
- août à septembre 2013, 2014, 2015
- 3 répétitions, 3 variétés
- Récolte : 60 fruits/variété/modalité/répétition
- Fruits stockés en frigos à 2°C
- Contrôle visuel sur fruits en janvier, février, mars, avril suivant

Essai de protection en verger

Impact du 'Mycosin' (6 traitements) et du 'Vacciplant' (2 traitements) sur l'incidence de Gloeosporium sp dans un verger du CRA-W en 2014

Mycosin: incidence = - 56% (Effet retard d'environ 1 mois)


<u>Vacciplant</u>: incidence = - 12 % mais pas significatif

(Résultats sur 1000 fruits)

Essai de protection en verger

Impact du 'Mycosin' (3 traitements) et du 'Vacciplant' (3 traitements) sur l'incidence de Gloeosporium sp dans un verger professionnel en 2015

Conclusion: Pas d'effets significatifs

2. Recherche de méthodes innovantes permettant d'optimiser la date de récolte Audrey Pissard

www.cra.wallonie.be

2. Recherche de méthodes permettant d'optimiser la date de récolte

....Pourquoi optimiser la date de récolte??

Date de récolte = point clé pour pommes de qualité!

- sur la qualité des fruits à la <u>récolte</u>
- > sur la conservation des fruits
- rendement de <u>transformation</u> (variétés cidricoles)

Date de récolte impact sur la conservation??

Récolte à un stade précoce ou avancé vs stade optimal:

- pertes en masse durant le stockage (Kvikliené et al. 2009)
- pertes causées par le développement de pourritures (Kvikliené et al. 2008)

Méthodes référence vs innovantes

Projet 'Qualipomme'

Promotion de pommes de qualité différenciée par l'application d'une méthodologie permettant d'optimiser la date de récolte (2012-2015).

Suivi de la maturation des variétés à la récolte

A. Méthodes de référence:

Méthodes physico-chimiques classiques

- Maturité ↔ Régression amidon (Indice KI)
- ➤ Fermeté ↔ Pénétrométrie
- ➤ Acidité ↔ Titration
- ➢ Polyphénols totaux ← Folin-Ciocalteu

Méthodes destructives et « time-consuming »

B. Méthodes 'innovantes':

Méthodes basées sur l'utilisation de la spectroscopie Vis-NIR

Méthodes 'innovantes'

= Méthodes non-destructives, rapides et 'vertes'

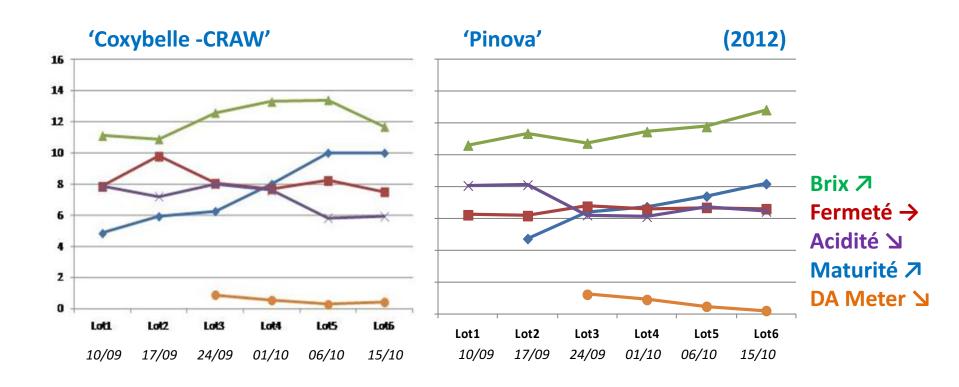
> Spectro XDS (Foss) (400 à 2500 nm)

MicroNir (JDSU Corp.) (1100 à 1600 nm)

- Da Meter (Turoni srl)
 - différence d'absorbance (DA)

Indice
$$I_{AD}$$
 = Abs 670 – Abs 720

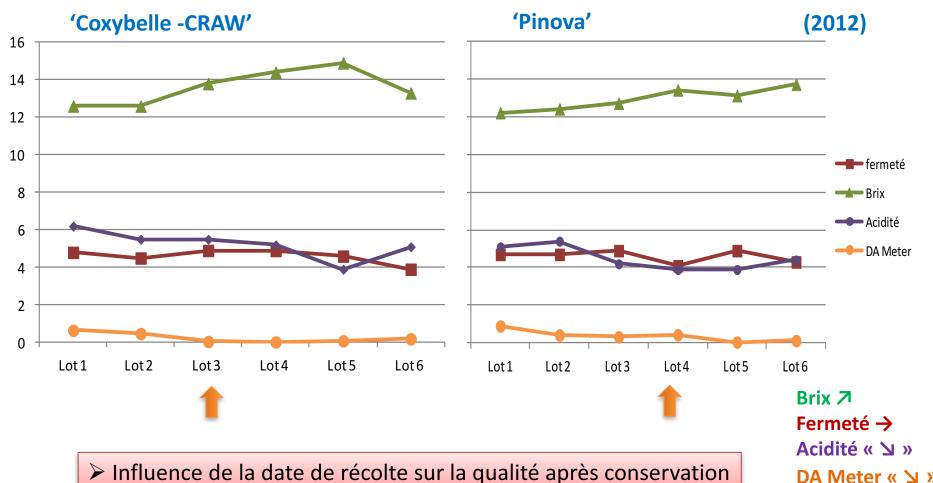
- indice I_{AD}


 □ au cours de la maturation
- valeurs spécifiques à chaque espèce et chaque cultivar

Collaboration avec l'unité 'Qualité des produits' du CRA-W (U15 - V. Baeten)

Analyses par méthodes de référence

Suivi des paramètres de qualité au cours de la maturation



> Evolution de la qualité des fruits au cours de la maturation

Analyses par méthodes de référence

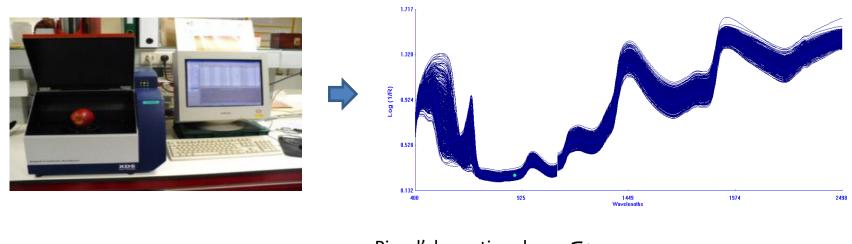
Analyse des paramètres après 4 mois de conservation – 4°C frigo CRA-W

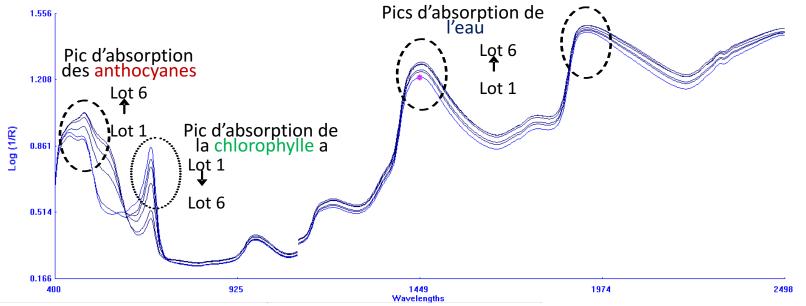

Influence de la date de récolte sur la qualité après conservation

www.cra.wallonie.be

Analyses par méthodes innovantes

Evolution de l'indice I_{AD} (DA Meter)




- > Diminution au cours de la maturation
- ➤ Mêmes tendances et pentes sur plusieurs années
- > Détermination de la valeur spécifique à chaque cultivar

Analyses par spectroscopie IR - XDS

Mesure des fruits et collecte des spectres

Analyses par spectroscopie IR - XDS

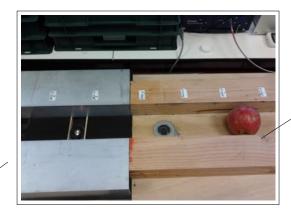
Développement de modèles de calibration

Base de données 'pommes'

RPD = Ratio précision du modèle « Bonne précision » qd RPD > 2,5-3

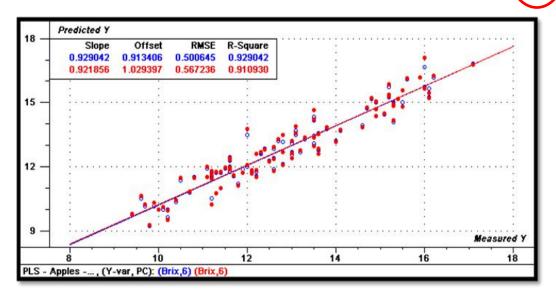
	N	SEC	RSQ	SECV	1-VR	Nb termes	SD	RPD
Maturité	1689	0.83	0.83	0.86	0.87	13	2.00	2.5
Fermeté	1673	0.9	0.77	0.93	0.76	11	1.88	2
Brix	1685	0.67	0.86	0.68	0.85	12	1.75	2.6
Acidité	1655	0.85	0.76	0.87	0.74	15	1.73	2
Polyphénols	1719	131.01	0.90	145.03	0.88	13	422.10	2.9
totaux								
Indice I _{AD}	1738	0.09	0.96	0.09	0.96	10	0.45	5
Indice Streif	1728	0.017	0.72	0.018	0.70	8	0.032	1.8

Bonne à très bonne précision de calibration!


Performances de la spectroscopie NIR pour déterminer des paramètres de qualité et de maturité des pommes

Analyses par spectroscopie IR - MicroNIR

Mesure des fruits et collecte des spectres



- > Spectres de 1100 à 1600 nm
- > Adapté au labo ou module portable

www.cra.wallonie.be

Développement de modèles de calibration

Spectromètre	Gamme	N	SEC	RSQ	SECV	1-VR	SD	RPD
	spectrale (nm)							
XDS	400-2500	91	0.49	0.93	0.56	0.91	1.9	3.4
XDS	1100-1600	89	0.52	0.91	0.62	0.88	1.86	3.0
MicroNir	1100-1600	91	0.50	0.93	0.57	0.91	1.9	3.3

- Très bonne précision de calibration pour la teneur en sucre!!
- Performances similaires au XDS!

Conclusion et perspectives

- Performances de la spectroscopie NIR et du DA Meter comme méthode nondestructive pour déterminer les paramètres de qualité et maturité des fruits
- Suivi avec le Felix Instrument F-750

- ✓ Carl Zeiss MMS-1 Spectrometer
- ✓ Spectres de 310 à 1100 nm
- ✓ Multi-paramètres:
 - Brix
 - MS
 - Acidité titrable
- ✓ Rapide (4-6 sec)
- ✓ Non-destructif
- ✓ GPS inclus

Delivrables et aide à la profession

1) « Fiche de Qualité »

Outil d'aide pour déterminer le stade optimal de récolte selon la finalité (consommation directe/ courte conservation ou longue conservation) et donc limiter les pertes !!

Exemple : « Fiche de qualité » de la nouvelle variété 'Coxybelle'

	Fermeté	Sucre	Maturité	Ind.Streif	Indice I _{AD}	Couleur fond
Réf VCBT / Longue conservation	/	/	/	/	/	/
Réf CRA-W/LC	7-9	12-13	8.5-9	0.06	0.2-0.5	6-7
Réf CRA-W / qualité	8-9	13-15	10	(0.07-0.08)	0.2-0.4	7-8

2) **DA Meter** à disposition des professionnels

